Tätigkeitsbericht

der Abteilung
Kernenergieüberwachung, Umweltradioaktivität

2007
1 Einleitung ... 5

2 Überwachung der Kernkraftwerke ... 7

2.1 Allgemeines .. 7
 2.1.1 Inspektionen vor Ort... 7
 2.1.2 Änderungsanzeigen ... 8
 2.1.3 Meldepflichtige Ereignisse .. 10
 2.1.4 Aufsichtsschwerpunkte ... 11
 2.1.5 Weitere Schwerpunkte der Abteilungstätigkeit .. 14
 2.1.6 Tätigkeit der Clearingstelle für meldepflichtige Ereignisse .. 19
 2.1.7 Gutachtertätigkeit .. 20

2.2 Gemeinschaftskernkraftwerk Neckarwestheim I (GKN I) ... 21
 2.2.1 Betriebsdaten ... 21
 2.2.2 Erteilte Genehmigungen .. 21
 2.2.3 Inspektionen vor Ort ... 21
 2.2.4 Änderungsanzeigen ... 21
 2.2.5 Meldepflichtige Ereignisse .. 22
 2.2.6 Besonderheiten ... 22

2.3 Gemeinschaftskernkraftwerk Neckarwestheim II (GKN II) 23
 2.3.1 Betriebsdaten ... 23
 2.3.2 Erteilte Genehmigungen .. 23
 2.3.3 Inspektionen vor Ort ... 23
 2.3.4 Änderungsanzeigen ... 23
 2.3.5 Meldepflichtige Ereignisse .. 24
 2.3.6 Besonderheiten ... 24

2.4 Kernkraftwerk Philippsburg 1 (KKP 1) .. 24
 2.4.1 Betriebsdaten ... 24
 2.4.2 Erteilte Genehmigungen .. 24
 2.4.3 Inspektionen vor Ort ... 25
 2.4.4 Änderungsanzeigen ... 25
 2.4.5 Meldepflichtige Ereignisse .. 26
 2.4.6 Besonderheiten ... 27
2.5 Kernkraftwerk Philippsburg 2 (KKP 2) ... 28
 2.5.1 Betriebsdaten ... 28
 2.5.2 Erteilte Genehmigungen .. 28
 2.5.3 Inspektionen vor Ort .. 28
 2.5.4 Änderungsanzeigen ... 29
 2.5.5 Meldepflichtige Ereignisse .. 29
 2.5.6 Besonderheiten ... 30

2.6 Kernkraftwerk Obrigheim .. 30
 2.6.1 Betriebsdaten ... 30
 2.6.2 Verfahren zur Erteilung der ersten Stilllegungs- und Abbaugenehmigung 31
 2.6.3 Inspektionen vor Ort .. 31
 2.6.4 Änderungsanzeigen .. 31
 2.6.5 Meldepflichtige Ereignisse .. 31

3 Sonstige kerntechnische Einrichtungen ... 32
 3.1 Wiederaufarbeitungsanlage Karlsruhe (WAK) .. 32
 3.2 Verglasungseinrichtung Karlsruhe (VEK) .. 33
 3.3 Hauptabteilung Dekontaminationsbetriebe (HDB) .. 35
 3.4 Kompakte Natriumgekühlte Kernreaktoranlage (KNK) 38
 3.5 Mehrzweckforschungsreaktor (MZFR) ... 38
 3.6 Europäisches Institut für Transurane (ITU) .. 39
 3.7 Tritiumlabor Karlsruhe ... 40
 3.8 Sonstige Einrichtungen im Forschungszentrum Karlsruhe 41
 3.9 TRIGA Heidelberg .. 41
 3.10 Siemens–Unterrichtsreaktoren (SUR 100) .. 42
4 Umweltradioaktivität und Strahlenschutz .. 43

4.1 Natürliche Radioaktivität ... 43

4.2 Kernreaktor-Fernüberwachung... 44

4.2.1 Statistische Informationen zum Betrieb der KFÜ ... 44
4.2.2 Betrieb der KFÜ im Jahr 2007, Erneuerung des Systems.............................. 45
4.2.3 Immissions-Überwachung - Neue Shortlink-Systeme zur Verbesserung des Funksondenempfangs ... 45
4.2.4 Erweiterung der Ausbreitungsrechnung (ABR)... 46

4.3 Überwachung der allgemeinen Umweltradioaktivität und Umgebungsüberwachung kerntechnischer Anlagen.............................. 47

4.3.1 Überwachung der allgemeinen Umweltradioaktivität ... 47
4.3.2 Umgebungsüberwachung kerntechnischer Anlagen ... 49

4.4 Strahlenschutz.. 50

4.4.1 Gesetz zur Kontrolle hochradioaktiver Strahlenquellen.. 50
4.4.2 Strahlenschutz-Fachkunderichtlinie ... 51

4.5 Kompetenzzentrum Strahlenschutz ... 51

4.6 Notfallschutz ... 52

4.6.1 Katastrophenschutzübungen .. 53
4.6.2 Daten der ABC-Erkunder ... 56
4.6.3 Elektronische Lagedarstellung ... 57

4.7 Forschungs- und Entwicklungsvorhaben ... 58

5 Entsorgung .. 61

5.1 Entsorgung radioaktiver Abfälle und abgebrannter Brennelemente..... 61
5.2 Standortzwischenlager .. 67
1 Einleitung

Eine wichtige Aufgabe des Umweltministeriums Baden-Württemberg (UM) ist die Überwachung (Genehmigung und Aufsicht) der Kernkraftwerke und der sonstigen kerntechnischen Einrichtungen im Land.

Das anschließende Kapitel 3 widmet sich den anderen kerntechnischen Einrichtungen in Baden-Württemberg. Dies sind alle im Rückbau befindlichen Anlagen sowie verschiedene Institute, Schulungsreaktoren und die Verglasungseinrichtung Karlsruhe, die einzige zurzeit im Bau befindliche kerntechnische Anlage in Deutschland.

\(^1\) ILK-Stellungnahme Nr. 28 auf www.ilk-online.org
\(^2\) http://www.um.baden-wuerttemberg.de/servlet/is/1566/
Kapitel 4 befasst sich mit der Kernreaktor-Fernüberwachung, der Überwachung der Umweltradioaktivität, dem Notfall- und Strahlenschutz.

In Kapitel 5 werden Zahlen zu Rahmenbedingungen der Entsorgungssituation baden-württembergischer Anlagen erläutert und über die Standortzwischenlager der Kernkraftwerksstandorte berichtet.
2 Überwachung der Kernkraftwerke

2.1 Allgemeines

2.1.1 Inspektionen vor Ort

<table>
<thead>
<tr>
<th>Inspektionsbereich</th>
<th>Inspektionsstage pro Kernkraftwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GKN I</td>
</tr>
<tr>
<td>1. Änderungsverfahren</td>
<td>6</td>
</tr>
<tr>
<td>2. Betriebsführung</td>
<td>4</td>
</tr>
<tr>
<td>3. Instandhaltung/ Wartung</td>
<td>4,5</td>
</tr>
<tr>
<td>4. Wiederkehrende Prüfungen</td>
<td>3</td>
</tr>
<tr>
<td>5. Qualitätssicherung</td>
<td>4</td>
</tr>
<tr>
<td>6. Fachkunde des Personals</td>
<td>3</td>
</tr>
<tr>
<td>7. Strahlenschutz</td>
<td>6,5</td>
</tr>
<tr>
<td>8. Chemie</td>
<td>2,5</td>
</tr>
<tr>
<td>9. HF-System</td>
<td>1,5</td>
</tr>
<tr>
<td>10. Alterungsmanagement</td>
<td>2,5</td>
</tr>
<tr>
<td>11. Vorkehrungen für Notfälle</td>
<td>0</td>
</tr>
<tr>
<td>12. Sicherung</td>
<td>3</td>
</tr>
<tr>
<td>13. Brennelementhandhabung</td>
<td>2,5</td>
</tr>
<tr>
<td>14. Brandschutz Arbeitsschutz</td>
<td>8</td>
</tr>
<tr>
<td>15. Dokumentation</td>
<td>1,5</td>
</tr>
<tr>
<td>16. Bautechnik</td>
<td>1</td>
</tr>
</tbody>
</table>

Weitere Aufsichtsbereiche, davon

- Meldepflichtige Ereignisse | 0 | 0,5 | 4,5 | 6 | 1,5 |
- Revision | 7 | 10 | 13 | 5 | 0,0 |
- Entsorgung allgemein (mit Interimslager und Standortzwischenlager) | 2 | 0 | 0 | 9 | 1,5 |
- Sonstiges | 7 | 9 | 0,5 | 0 | 0,0 |

| Summe | 67,5 | 58,5 | 94 | 64,5 | 30,0 |

2.1.2 Änderungsanzeigen

In einem Kernkraftwerk werden jährlich etwa zwischen 30 und 70 Nachrüstmaßnahmen und sonstige genehmigungs-, zustimmungs- oder anzeigepflichtige Veränderungen zur weiteren Verbesserung der Anlagensicherheit oder zur betrieblichen Optimierung durchgeführt.
Die Kontrolle dieser Änderungen der Anlage oder ihres Betriebs ist eine bedeutende Aufgabe der atomrechtlichen Aufsichtstätigkeit. Nach einem landeseinheitlichen Änderungsverfahren werden die Veränderungen in Abhängigkeit von ihrer sicherheitstechnischen Relevanz in vier Kategorien von Änderungsanzeigen eingeteilt:

Kategorie A `wesentliche Veränderungen´
Wesentliche Veränderungen der Anlage oder ihres Betriebs bedürfen nach § 7 Abs. 1 des Atomgesetzes der Genehmigung durch die Aufsichtsbehörde.

Kategorie B `bedeutsame Veränderungen´
Änderungen dieser Kategorie bedürfen der Zustimmung der Aufsichtsbehörde.

Kategorie C `unerhebliche Veränderungen´
Änderungen der Kategorie C dürfen nach Vorliegen eines Prüfberichts des Gutachters durchgeführt werden.

Kategorie D `geringfügige Veränderungen´
Veränderungen, die offensichtlich keine Auswirkungen auf das Sicherheitsniveau der Anlage haben können und die keine nukleare sicherheitstechnische oder sicherungstechnische Bedeutung haben, werden vom Anlagenbetreiber in Eigenregie durchgeführt. Sie müssen aber für die Aufsichtsbehörde nachvollziehbar dokumentiert werden.

Tabelle 2.2 enthält eine Übersicht über die Einstufung der im Jahr 2007 eingereichten Änderungsanzeigen.
2.1.3 Meldepflichtige Ereignisse

In der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung (AtSMV) ist im Einzelnen festgelegt, welche Arten von in einem Kernkraftwerk eingetretenen Ereignissen innerhalb welcher Frist der Aufsichtsbehörde zu melden sind. Entsprechend der Dringlichkeit, mit der die Aufsichtsbehörde informiert sein muss, werden in der Verordnung folgende Kategorien von meldepflichtigen Ereignissen unterschieden:

- Kategorie N (Normalmeldung) – innerhalb von 5 Werktagen,
- Kategorie E (Eilmeldung) – innerhalb von 24 Stunden,
- Kategorie S (Sofortmeldung) – unverzüglich.

Die Verfolgung und Bewertung von sicherheitstechnisch bedeutsamen Ereignissen ist eine wichtige Aufgabe der Aufsichtsbehörde. Dabei fließen die Ereignisse und Erfahrungen aus anderen Kernkraftwerken der Bundesrepublik und aus dem Ausland in die Arbeit ein. Die wesentliche Fragestellung ist hierbei, ob und wenn ja, welche Konsequenzen daraus für die zu beaufsichtigenden Anlagen gezogen werden müssen. Durch die Vielzahl der Anlagen stellt diese Form des Erfahrungsrückflusses ein wichtiges Verfahren für den Gewinn sicherheitstechnischer Erkenntnisse dar.

<table>
<thead>
<tr>
<th>Änderungsanzeigen pro Kernkraftwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKN I</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Summe</td>
</tr>
<tr>
<td>Kategorie A</td>
</tr>
<tr>
<td>Kategorie B</td>
</tr>
<tr>
<td>Kategorie C</td>
</tr>
</tbody>
</table>

Tabelle 2.2: Änderungsanzeigen der baden-württembergischen Kernkraftwerke im Jahr 2007
sehr geringer sicherheitstechnischer Bedeutung werden als "unterhalb der INES-Skala" einzustufende Ereignisse oder auch als solche der "Stufe 0" bezeichnet. Die 18 im Jahr 2007 von baden-württembergischen Kernkraftwerken gemeldeten Ereignisse sind in Tabelle 2.3 dargestellt. Alle Ereignisse waren Normalmeldungen im Sinne der AtSMV und wurden unterhalb der INES-Skala in Stufe 0 eingeordnet, also in die jeweils niedrigste Meldekategorie.

<table>
<thead>
<tr>
<th>Meldepflichtige Ereignisse pro Kernkraftwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKN I</td>
</tr>
<tr>
<td>Summe</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einstufung nach AtSMV:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kategorie N</td>
</tr>
<tr>
<td>Kategorie E</td>
</tr>
<tr>
<td>Kategorie S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nach INES-Einstufung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 0</td>
</tr>
<tr>
<td>Stufe 1 (und höher)</td>
</tr>
</tbody>
</table>

*) KWO ist seit 11.5.2005 nicht mehr im Leistungsbetrieb, meldepflichtige Ereignisse können dennoch auftreten

Tabelle 2.3: Meldepflichtige Ereignisse und deren Einstufung für die baden-württembergischen Kernkraftwerke im Jahr 2007

2.1.4 Aufsichtsschwerpunkte

Aufsichtsschwerpunkte grenzen sich insbesondere durch folgende Eigenschaften von der Basisaufsicht ab:
• Hohe sicherheitstechnische Relevanz,
• inhaltliche Prüftiefe,
• Strukturierung der Aufgabe als Projekt,
• hoher zeitlicher Aufwand (> 6 Monate),
• referatsübergreifende Teams.

Gutachter werden zur Durchführung der Untersuchungen einbezogen. Die Ergebnisse werden in einer abschließenden Dokumentation festgehalten und Konsequenzen aus der Untersuchung im Rahmen der Aufsicht weiterverfolgt.

Planung und Durchführung der Notfallschutzübungen beim Betreiber

Überprüfung der Umsetzung der notwendigen Maßnahmen in den Betriebshandbüchern der Kernkraftwerke aufgrund der meldepflichtigen Ereignisse im KKP 2 zunächst für GKN II

2.1.5 Weitere Schwerpunkte der Abteilungstätigkeit

Überprüfung der Atomaufsicht in Deutschland

ILK-Review

Zusammenfassend kommt die ILK zu dem Ergebnis, dass das UM über eine kompetente Organisation verfügt und die Fähigkeiten zur Erfüllung ihrer Aufsichtsaufgaben besitzt. Das UM habe geeignete Prozesse für die verschiedenen Aufsichtsbereiche entwickelt und wende diese übereinstimmend mit den Anforderungen der IAEA-Standards wirksam an. Die Darstellung der Ergebnisse wurde stark an die international übliche Einteilung in „Gute Praxis (good practise)“, „Anregung (suggestion)“ und „Empfehlung (recommendation)“ angelehnt. Für die zentralen Bereiche der Kernenergieaufsicht in Baden-Württemberg wurden von der ILK Gute-Praxis-Bewertungen ausgesprochen, insbesondere zum Verhältnis zwischen Aufsichtsbehörde und Betreiber (ILK-Bericht, Kapitel 2.3), zur Personalausstattung (Kapitel 2.2), zum Organisationsmanagement der Behörde (Kapitel 3.3), zum Umgang mit meldepflichtigen Ereignissen (Kapitel 5.4) sowie zur Bewertung der Sicherheitskultur der Betreiber (Kapitel 6.4). Die ILK würdigte die hohe Qualität des Aufsichtshandbuchs und regte zu dessen weiterer Verbesserung und der des internen Qualitätsmanagements die Durchführung formaler Überprüfungsverfahren an. Die von der ILK ausgesprochenen Empfehlungen betrafen eine direkte Kommunikation mit der Öffentlichkeit (Kapitel 2.4), die Sicherstellung ausreichender Aus- und Fortbildungsmaßnahmen (u.a. zur Sicherheitskultur) und die Intensivierung der behördlichen Zusammenarbeit mit anderen Aufsichtsbehörden und internationalen Institutionen (Kapitel 3.2). Darüber hinaus empfahl die ILK dem UM eine Reduzierung der Prüfmaßnahmen seitens der technischen Sachverständigen (Kapitel 6.4) und die weitere Verbesserung des Notfallschutzes (Kapitel 7).

Insgesamt wurde die Aufsichtstätigkeit des UM in der Sache als wirksam beurteilt. Sie entspricht in ihrem Vorgehen uneingeschränkt internationalen Anforderungen. Die zentralen Aufsichtsbereiche wurden von der ILK ausnahmslos als gut bewertet. Das detaillierte und präzise Aufsichtshandbuch wurde ebenso gewürdigt wie der

Um den Stellenwert der Mitarbeiterfortbildung zu unterstreichen und eine gezielte Vorgehensweise bei der Planung von Fortbildungsmaßnahmen zu ermöglichen, wurde innerhalb der Abteilung ein Kompetenzkatalog entwickelt, in dem sowohl Anforderungen als auch entsprechende Schulungsmaßnahmen aufgeführt sind. Die Abteilung beabsichtigt des Weiteren, Workshops zur Aufsichtspraxis durchzuführen, um den Erfahrungsaustausch innerhalb der Abteilung und ein gemeinsames Verständnis von Aufsichtskultur sowie die konsistente Anwendung des Aufsichtsinstrumentes KOMFORT zu fördern.

Darüber hinaus ist geplant, Kreuzinspektionen mit anderen Bundesländern durchzuführen. Diese sollen, wie auch die verstärkte Mitarbeit auf internationaler Ebene (IAEA, OECD/NEA, EU/WENRA), dazu dienen, am nationalen wie internationalen Erfahrungsaustausch stärker zu partizipieren. Im nationalen Rahmen hat sich die Abteilung im Jahr 2007 bereits intensiv an der Weiterentwicklung des kerntechnischen Regelwerks beteiligt. Es ist beabsichtigt, auch künftig an den verschiedenen Regelwerksvorhaben engagiert mitzuarbeiten.
Im Bereich des Notfallschutzes wurde von der Abteilung ein Konzept zur Durchführung
von Notfallschutzübungen erarbeitet. Durch regelmäßige Übungen wird die Notfall-
schutzkompetenz weiter erhöht. Hierfür wurde ein Übungsplan erstellt.

Um die Eigenverantwortung des Betreibers zu stärken, wurden verschiedene Projekte
wie z.B. die Überarbeitung des Landeseinheitlichen Änderungsverfahrens, Gespräche
zur Entlassung von Unterlagen aus der Prüfpflicht und Strategiegespräche mit den
Gutachterorganisationen eingerichtet.

Die Untersuchung der Kernenergieaufsicht in Baden-Württemberg durch die
Internationale Länderkommission Kerntechnik ist auch Teil des Selbst-
bewertungsprozesses der Behörde im Hinblick auf die bevorstehende Überprüfung
der Kernenergieaufsicht in Deutschland durch die Internationale Atomenergie-
organisation (IAEO), die im September 2008 durchgeführt wird. Die aus dem ILK-
Review abgeleiteten Maßnahmen werden - soweit noch nicht umgesetzt - in den
sogenannten „Action Plan“ einfließen, der im Rahmen dieses Selbstbewertungs-
prozesses erarbeitet wird.

Umbau des Radiologischen Lagezentrums

Die seit längerem geplante und vorbereitete Erweiterung des Radiologischen Lage-
zentrums im Umweltministerium wurde Ende 2006 realisiert und im Jahr 2007 in
Betrieb genommen. Das Lagezentrum wurde räumlich vergrößert, eine Klimatisierung
eingebaut und eine moderne Notfalltelefonanlage installiert.

Das Radiologische Lagezentrum ist die Einsatz- und Überwachungszentrale bei einem
radiologisch bedeutsamen Ereignis im Land oder im grenznahen Ausland. Dazu
werden radiologische Messdaten z. B. von Erkundungsfahrzeugen der Feuerwehren
oder von den Messstationen ausgewertet, die Parameter des Deutschen Wetter-
dienstes online abgefragt, Ausbreitungsberechnungen durchgeführt und Dosiswerte
der Bevölkerung vorausberechnet und Maßnahmen erarbeitet.
Tätigkeiten im Zusammenhang mit der Erarbeitung des neuen Regelwerks

Nachdem das BMU im September 2006 die Revision B der Aktualisierung des kerntechnischen Regelwerks im Internet eingestellt und an die Länder übersandt hatte, stand in 2007 die weitere Strukturierung und fachliche Begleitung des Regelsetzungsprozesses im Vordergrund. Im Wesentlichen sind hier vier Verfahrensbereiche, die alle intensiv vom UM verfolgt bzw. begleitet wurden, zu nennen:

2.1.6 Tätigkeit der Clearingstelle für meldepflichtige Ereignisse

Im Oktober 2001 wurde in der Abteilung Kernenergieüberwachung, Umweltradioaktivität des UM eine „Clearingstelle für meldepflichtige Ereignisse“ eingerichtet. Sie setzt sich zurzeit aus 9 Mitarbeitern der Abteilung zusammen.

Daneben prüft die Clearingstelle Sachverhalte, bei denen der Verdacht besteht, dass sie nach der AtSMV gemeldet werden müssen, bei denen aber die Meldepflicht nicht offensichtlich ist – diese werden als „potenziell meldepflichtiges Ereignis“ bezeichnet. Sie unterstützt mit ihrer Tätigkeit das für die aufsichtliche Bearbeitung eines festgestellten Sachverhaltes zuständige Fachreferat.

Im Jahr 2007 wurden von der Clearingstelle 19 Sachverhalte beraten, von denen 18 nach der AtSMV meldepflichtig waren. Der Aufwand für die Tätigkeit der Clearingstelle betrug 2007 ohne Vor- und Nachbereitung der Clearingsitzungen ca. 19 Personentage. In allen Fällen konnte die Bewertung des Betreibers bestätigt werden.
2.1.7 Gutachtertätigkeit

Die TÜV SÜD ET GmbH BW ist der Generalgutachter der baden-württembergischen Aufsichtsbehörde. Er unterstützt die Abteilung „Kernenergieüberwachung, Umwelt-radioaktivität“ in allen Fragestellungen, die sich im Zusammenhang mit der Überwachung über die Kernkraftwerke ergeben. Dies geschieht vor allem im Zusammenhang

- mit Genehmigungs- und Änderungsverfahren,
- bei der Prüfung von Fertigungsunterlagen – so genannte Vorprüfung,
- bei der begleitenden Kontrolle bei der Durchführung von Änderungen in den Kernkraftwerken oder bei der Fertigung von Komponenten usw.,
- bei der Überwachung von ausgewählten wiederkehrenden Überprüfungen und Sonderprüfungen, die in den Kernkraftwerken vom Betreiber durchgeführt werden
- und bei speziellen Fragestellungen, die sich aus der Aufsicht ergeben.

Schwerpunkte der gutachterlichen Arbeiten bei der TÜV SÜD ET waren im Jahr 2007

- das Stilllegungsverfahren für das Kernkraftwerk Obrigheim,
- das Aufsichts- und Genehmigungsverfahren für die Errichtung und den Betrieb der Verglasungseinrichtung Karlsruhe (VEK),
- Implementierung eines Alterungsmanagements für die Kernkraftwerke Neckarwestheim, Philippsburg und Obrigheim,
- Austausch des Reaktorschutzes im Schaltanlagengebäude
- Untersuchungen im Zusammenhang mit der erforderlichen Wasserüberdeckung im Sumpf des Reaktorgebäudes für bestimmte seltene Kühlmittelverluststörfälle.

Die Aufsichtsbehörde wird in ihrer Tätigkeit nicht nur von der TÜV ET als so genanntem Generalgutachter unterstützt. Seit 1.8.2003 ist daneben die „Kerntechnik Gutachter-Arbeitsgemeinschaft Baden-Württemberg" (KeTAG) mit

- der Untersuchung und Bewertung meldepflichtiger Ereignisse,
- der Kontrolle der betreiberseitigen Qualitätssicherung und Qualitätssicherungsüberwachung,
- der Inspektion im Rahmen von Anlagenbegehungen einschließlich der Kontrolle der Betriebsführung sowie
- gutachterlichen Tätigkeiten im Zusammenhang mit der Aufsicht über die Zwischenlager

bei den Kernkraftwerken in Baden-Württemberg beauftragt.

20

2.2 Gemeinschaftskernkraftwerk Neckarwestheim I (GKN I)

2.2.1 Betriebsdaten

Das EnKK Kernkraftwerk Neckarwestheim, Block I (GKN I) in Neckarwestheim, ein Druckwasserreaktor mit 840 MW elektrischer Bruttoleistung, wurde von Siemens/KWU in den Jahren 1972 bis 1976 errichtet. In der Anlage wurde im Zeitraum vom 19.05. bis 10.06.2007 die Jahresrevision durchgeführt. Im Berichtsjahr betrug die Verfügbarkeit des GKN I 93,1%.

2.2.2 Erteilte Genehmigungen

Im Jahr 2007 wurde dem GKN I keine atomrechtliche Genehmigung erteilt.

2.2.3 Inspektionen vor Ort

2.2.4 Änderungsanzeigen

Im Berichtsjahr wurden vom Betreiber 69 neue Änderungsanzeigen eingereicht. Es handelt sich dabei um eine Anzeige der Kategorie A, um 29 Anzeigen der Kategorie B und 39 der Kategorie C.
Verbesserung der Elektro-, Leit- und Systemtechnik hinsichtlich einer Optimierung des Schutzkonzeptes für GKN I

2.2.5 Meldepflichtige Ereignisse

2.2.6 Besonderheiten
Sicherheitsüberprüfung
Im Berichtsjahr wurde bei GKN I die periodischen Sicherheitsüberprüfung abgeschlossen und dem Umweltministerium fristgerecht zum 31.12.2007, d.h. wie im Atomgesetz festgelegt, vorgelegt. Die alle 10 Jahre durchzuführende Sicherheitsüberprüfung wurde nach einem bundesweit geltenden Leitfaden durchgeführt. Der Betreiber des GKN I kommt zusammenfassend zu dem Ergebnis: „... dass das GKN I an dem heutigen Stand der Technik gemessen werden kann und auch im Lichte neuerer Erkenntnisse ausreichend Vorsorge gegen Schäden getroffen wurde“. Das Umweltministerium wird mit Unterstützung zugezogener Gutachter die Sicherheitsüberprüfung (insgesamt ca. 40 Aktenordner) zügig bewerten.

Übertragung von Elektrizitätsmengen

Dübelinspektionen (WLN 6/2006)
Nach den Befunden in den Kernkraftwerken in Biblis wurden in GKN I vertiefte Untersuchungen der verbauten Dübelverbindungen durchgeführt. Mängel, die Sofortmaßnahmen erforderlich gemacht hätten, wurden dabei nicht festgestellt.

2.3 Gemeinschaftskernkraftwerk Neckarwestheim II (GKN II)

2.3.1 Betriebsdaten

Der Block II des Gemeinschaftskernkraftwerks Neckar (GKN II) in Neckarwestheim ist ein Druckwasserreaktor des Konvoi-Typs mit 1400 MW elektrischer Bruttolistung. Er wurde in den Jahren 1982 bis 1988 von Siemens/KWU errichtet. Es ist das jüngste in Deutschland in Betrieb gegangene Kernkraftwerk. Die Jahresrevision erfolgte vom 11.08. bis 05.09.2007. Im Berichtsjahr betrug die Verfügbarkeit des GKN II 91,1%.

2.3.2 Erteilte Genehmigungen

Im Jahr 2007 wurde dem GKN II keine atomrechtliche Genehmigung erteilt.

2.3.3 Inspektionen vor Ort

2.3.4 Änderungsanzeigen

Im Berichtsjahr wurden vom Betreiber 38 neue Änderungsanzeigen eingereicht. Es handelt sich dabei um eine Anzeige der Kategorie A, um 18 Anzeigen der Kategorie B und 19 der Kategorie C.
Errichtung eines Fremdpersonalgebäudes

2.3.5 Meldepflichtige Ereignisse
Im Jahr 2007 ereigneten sich in der Anlage GKN II keine meldepflichtigen Ereignisse.

2.3.6 Besonderheiten

Übertragung von Elektrizitätsmengen
Im Dezember 2006 wurde von der EnBW beim Bundesumweltministerium (BMU) ein Antrag auf Übertragung von 46,9 TWh vom GKN II auf das GKN I beantragt (siehe Kap. 2.2.6).

Dübelinspektionen (WLN 6/2006)
Nach den Befunden in den Kernkraftwerken in Biblis wurden in GKN I vertiefte Untersuchungen der verbauten Dübelverbindungen durchgeführt. Mängel, die Sofortmaßnahmen erforderlich gemacht hätten wurden dabei nicht festgestellt.

2.4 Kernkraftwerk Philippsburg 1 (KKP 1)

2.4.1 Betriebsdaten

2.4.2 Erteilte Genehmigungen
Es wurden im Jahr 2007 keine Genehmigungen erteilt.
2.4.3 Inspektionen vor Ort

Für Aufsichtsbesuche wurden in der Anlage KKP 1 insgesamt 94 Personentage aufgewendet. Dies entspricht einer Anwesenheit bei Leistungsbetrieb von ca. 1,5 Personentagen pro Woche. Während der Jahresrevision wurden die Aufsichtstätigkeiten intensiviert (ca. 4 Manntage/Woche). Wichtiger Bestandteil war dabei die Teilnahme an den regelmäßigen Revisionsgesprächen. In Kap. 2.1.1 ist für alle Inspektionsbereiche der tatsächlich durchgeführte Aufsichtsaufwand dargestellt.

Ein Schwerpunkt der Aufsicht vor Ort war die Umsetzung der Erkenntnisse aus der vom Gutachter einerseits und vom Betreiber andererseits durchgeführten vertieften Überprüfungen des Brandschutzes.

2.4.4 Änderungsanzeigen

Für KKP 1 wurden von EnBW insgesamt 31 Änderungsanträge eingereicht. Nach dem landeseinheitlichen Änderungsverfahren waren davon 15 Änderungen der Kategorie B und 16 Änderungen der Kategorie C zuzuordnen (siehe Kapitel 2.1.2). Zwei Beispiele für Änderungsanzeigen der Kategorie B sind die Folgenden:

Einbau von sechs Spannungskonstanthaltern
Zur Optimierung der Spannungskoordination und der Kurzschlussfestigkeit der Block-Notstromanlagen wurden sechs Spannungskonstanthalter und die Spannungsüberwachung der 6-kV-Notstromanlage neu errichtet. Dazu mussten als bauliche Maßnahme ergänzend die vier Transformatorboxen erweitert werden. Der Schwerpunkt der Aufsichtstätigkeit lag insbesondere bei den bautechnischen, brandschutztechnischen und lüftungstechnischen Maßnahmen.

Ertüchtigung des Reaktorgebäudekrans
Nach der Inbetriebnahme des Standort-Zwischenlagers für abgebrannte Brennelemente war es aus strahlenschutztechnischen und arbeitsökonomischen Belangen erforderlich, die Tragkraft des Reaktorgebäudekrans im KKP 1 von 125 Tonnen auf 140 Tonnen zum Zwecke der Handhabung von Transport- und Lagerbehältern des
Typs CASTOR V/52 zu erhöhen. Die Umbaumaßnahmen wurden aufsichtlich intensiv begleitet.

2.4.5 Meldepflichtige Ereignisse

Die durchgeführte Berechnung der Leckagemenge zeigte eine gegenüber dem sehr geringen zulässigen Wert erhöhte Leckage um ca. den Faktor 60. Damit war nach den geltenden Betriebsvorschriften formal die Meldepflicht nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung (AtSMV) nach der Kategorie „Eilt“ gegeben. In seiner Meldung stuft der Betreiber das Ereignis nach der Internationalen Bewertungsskala „INES“ in die Klasse 1 „Störung“ ein.

2.4.6 Besonderheiten

Im Folgenden werden einige Konsequenzen dargestellt, die aus Ereignissen und Befunden abgeleitet wurden, welche im Rahmen von Weiterleitungsnachrichten der GRS zu umfangreichen Anlagenuntersuchungen geführt haben.
Dübelinspektionen (WLN 6/2006)
Nach den Befunden in den Kernkraftwerken in Biblis wurden in KKP 1 vertiefte Untersuchungen der verbauten Dübelverbindungen durchgeführt. Mängel, die Sofortmaßnahmen erforderlich gemacht hätten wurden dabei nicht festgestellt.

Überprüfung der elektrischen Versorgung (WLN 7/2006)

2.5 Kernkraftwerk Philippsburg 2 (KKP 2)

2.5.1 Betriebsdaten

2.5.2 Erteilte Genehmigungen
Am 01.08.2007 wurde die Genehmigung zur Umrüstung der Reaktorleistungsleitechnik (REALL) mit den Kernfunktionen Reaktorleistungsbegrenzung (RELEB), Steuerstabfahrbegrenzung (STAFAB), Kühlmittelmassen-, -druck und –temperaturgradientenbegrenzung (MADTEB), Reaktorleistungsregelung und Primärkreisregelung, sowie zur Umrüstung des Kern-Innenmesssystems auf das digitale Prozessleitsystem TELEPERM-XS erteilt. Genehmigt wurden auch damit verbundene Tätigkeiten, insbesondere der Ausbau der fest verdrahteten Technik, Einbau der speicherprogrammierbaren Technik, die Implementierung der Funktionssoftware und die Einbeziehung der umgerüsteten Technik in den Betrieb der Anlage.

2.5.3 Inspektionen vor Ort
Für Inspektionen vor Ort in der Anlage KKP 2 wurden insgesamt 30 Personentage aufgewendet. Dies entspricht einer Präsenz von ca. 1 Manntag pro Woche. In der
Jahresrevision war die Präsenz auf Grund der verstärkten Tätigkeiten in der Anlage erhöht (ca. 2 Manntage/Woche). Dabei nahmen die Aufsichtsbeamten auch an den regelmäßigen Revisionsgesprächen teil. In Kapitel 2.1.1 ist für alle Inspektionsbereiche der tatsächlich durchgeführte Aufsichtsaufwand dargestellt.

Die Anlagenbegehungen wurden in allen sicherheitstechnisch relevanten Bereichen, vor allem im Bereich „Brandschutz“ intensiv fortgeführt.

2.5.4 Änderungsanzeigen

Für KKP 2 wurden von der EnBW insgesamt 42 Änderungsanträge eingereicht. Nach dem landeseinheitlichen Änderungsverfahren waren 20 der Kategorie B und 22 der Kategorie C zuzuordnen. Hervorzuheben sind folgende Änderungen der Kategorie B:

Anpassung und redaktionelle Umgestaltung von Betriebshandbuch und Notfallhandbuch

Überführung der Bestimmungen des § 29 Strahlenschutzverordnung in das Betriebsreglement

Einarbeitung des Verfahrens zur Freigabe von Gebäuden bzw. Gebäudeteilen zur Wieder-/Weiterverwendung nach § 29 StrlSchV in die schriftlichen betrieblichen Reglungen (BHB-Strahlenschutzordnung, BAW U 130)

Verbesserung des Brandschutzes

2.5.5 Meldepflichtige Ereignisse

Im Jahr 2007 gab es in der Anlage KKP 2 insgesamt 3 meldepflichtige Ereignisse. Sie waren alle in die Kategorie N (Normalmeldung) und nach der internationalen
Bewertungsstadt INES in die Stufe 0 (keine oder nur sehr geringe sicherheits-technische Bedeutung) einzustufen.

2.5.6 Besonderheiten

Im Folgenden werden einige Konsequenzen dargestellt, die aus Ereignissen und Befunden abgeleitet wurden, welche im Rahmen von Weiterleitungsrichtungen der GRS zu umfangreichen Anlagenuntersuchungen geführt haben.

Dübelinspektionen (WLN 6/2006)
Nach den Befunden in den Kernkraftwerken in Biblis wurden in KKP 2 vertiefte Untersuchungen der verbauten Dübelverbindungen durchgeführt. Mängel, die Sofortmaßnahmen erforderlich gemacht hätten, wurden dabei nicht festgestellt.

Überprüfung der elektrischen Versorgung (WLN 7/2006)

2.6 Kernkraftwerk Obrigheim

2.6.1 Betriebsdaten

2.6.2 Verfahren zur Erteilung der ersten Stilllegungs- und Abbaugenehmigung

2.6.3 Inspektionen vor Ort

2.6.4 Änderungsanzeigen

Im Berichtsjahr wurden vom Betreiber 24 neue Änderungsanzeigen eingereicht. Es handelt sich dabei um 14 Anzeigen der Kategorie B und 10 der Kategorie C. Die überwiegende Anzahl der Änderungsanzeigen wurden zur Außerbetriebnahme von nicht mehr benötigten Systemen gestellt.

2.6.5 Meldepflichtige Ereignisse

Im Jahr 2007 ereigneten sich in der Anlage KWO keine meldepflichtigen Ereignisse.
3 Sonstige kerntechnische Einrichtungen

3.1 Wiederaufarbeitungsanlage Karlsruhe (WAK)

Die Aufarbeitung bestrahlter Brennelemente in der Wiederaufarbeitungsanlage Karlsruhe (WAK) wurde 1990 eingestellt. In den 20 Betriebsjahren wurden rund 200 t Kernbrennstoff aufgearbeitet. Aus der Wiederaufarbeitung sind ca. 60 m³ hochradioaktiver flüssiger Abfall, sog. HAWC, mit einem Radioaktivitätsinventar von ca. $6 \cdot 10^{17}$ Bq vorhanden, der in der Lagereinrichtung für hochradioaktive Abfälle (LAVA) in zwei Lagerbehältern gelagert wird. Diese hochradioaktive Spaltproduktlösung soll in der Verglasungseinrichtung Karlsruhe (VEK), die sich derzeit in der Inbetriebsetzungsphase befindet, verglast werden (vgl. Kap 3.2).

Für das Jahr 2007 sind folgende im atomrechtlichen Aufsichts- und Genehmigungsverfahren behördlich begleitete Vorgänge hervorzuheben:

- Im Prozessgebäude wurden bereits früher genehmigte Maßnahmen zum Rückbau fortgeführt. Dazu gehörten u. a. der Abbau von Teilen der Lüftungsanlage, Kabeldemontagen und radiologische Bestandsaufnahmen.

• Anfang 2007 wurden die überarbeiteten Unterlagen für den Genehmigungsantrag für die fernhantierte Demontage der HAWC-Lagerbehälter im HWL und in der LAVA von der WAK vorgelegt. Die Begutachtung durch die TÜV SÜD Energietechnik wurde wieder aufgenommen.

• Im April 2007 wurde mit Rückbauschritt 4 die Deregulierung nach Verglasungsende beantragt. Sie beinhaltet im Wesentlichen die Außerbetriebnahme der nach Verglasungsende nicht mehr benötigten Systeme, eine nachfolgende Anpassung der schriftlichen betrieblichen Regelungen und der Schichtbesetzung.

• Im Berichtszeitraum erfolgten ferner eine Reihe von Sanierungsarbeiten zur Gewährleistung eines störungsfreien Anlagenbetriebes (u. a. Erneuerung von elektrischen Schaltanlagen).

Vom Betreiber wurden 2007 insgesamt 28 Änderungen der Anlage oder ihres Betriebes neu beantragt, die als nach dem Atomgesetz nicht wesentliche Änderungen im Aufsichtsverfahren bearbeitet werden.

In der Anlage ereigneten sich im Berichtsjahr 11 meldepflichtige Ereignisse, die alle in die Meldekategorie N (Normalmeldung) nach der atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung (AtSMV) und Stufe 0 (d. h. unterhalb der 7-stufigen Skala) nach der internationalen Bewertungsskala INES eingestuft wurden. Die Ereignisse waren damit alle von geringer sicherheitstechnischer Bedeutung.

Im Jahr 2007 erfolgten in der WAK 35 Aufsichtsbesuche durch die Behörde entsprechend den Vorgaben des WAK-Aufsichtshandbuches.

3.2 Verglasungseinrichtung Karlsruhe (VEK)

In der Verglasungseinrichtung Karlsruhe (VEK) soll das hochradioaktive flüssige Abfallkonzentrat (HAWC) aus dem Betrieb der WAK in ca. 1½-jähriger Betriebszeit endlagerfähig verglast werden. Anschließend werden die Glaskokillen in ein zentrales Zwischenlager transportiert und dort bis zu ihrer Endlagerung zwischengelagert. Mit der Verglasung des HAWC wird die Voraussetzung für den endgültigen Rückbau der WAK geschaffen, da erst dann die Lager für hochradioaktive Flüssigabfälle und die VEK abgebaut werden können.

Im Jahr 2006 ist die Genehmigungszuständigkeit vom Wirtschaftsministerium zum Umweltministerium gewechselt. Als Genehmigungsbehörde hat das Umweltministerium die Begutachtung der eingereichten Unterlagen zur 2. TBG durch den zugezogenen Sachverständigen begleitet, eigene Unterlagenprüfungen durchgeführt und einen Genehmigungsentwurf zur 2. TBG erstellt.
3.3 Hauptabteilung Dekontaminationsbetriebe (HDB)

Die Hauptabteilung Dekontaminationsbetriebe (HDB) konditioniert die im Forschungszentrum Karlsruhe anfallenden sowie die an die Landessammelstelle Baden-Württemberg abgelieferten radioaktiven Abfälle und lagert diese bis zur Abgabe an ein Endlager des Bundes (Zwischenlagerung).

Einige Vorgänge der atomrechtlichen Aufsichts- und Genehmigungstätigkeit des Jahres 2007 sind besonders hervorzuheben:

Abb. 3.3:
Zwischenlager 526 der HDB mit Zusatzlüftung (oben links), Nahaufnahme des Gebläses mit Filter (oben rechts) und Lüftungskanäle und Schaltschränke im Zwischenlager (links)
3.4 Kompakte Natriumgekühlte Kernreaktoranlage (KNK)

Die Kompakte Natriumgekühlte Kernreaktoranlage (KNK) im Forschungszentrum Karlsruhe war ein Versuchskraftwerk mit einer thermischen Leistung von 58 MW bzw. mit einer elektrischen Leistung von 20 MW.

Es ist vorgesehen, die Anlage KNK II bis zum Jahr 2011 in 10 Schritten (10 Stilllegungsgenehmigungen) vollständig bis zur „grünen Wiese“ abzubauen. Die Gesamtkosten des Vorhabens sind mit 301 Mio. € veranschlagt, wovon bisher Kosten in Höhe von 238,7 Mio. € angefallen sind (Stand: 30.06.2007). Geldgeber hierbei sind der Bund mit anteilig 90% und das Land Baden-Württemberg mit anteilig 10% der Gesamtkosten.

3.5 Mehrzweckforschungsreaktor (MZFR)

Im Jahr 2007 wurde die Isolierung des Reaktordruckbehälters demontiert und anschließend die Trockenzerlegung des Reaktordruckbehälterunterteils durchgeführt.

3.6 Europäisches Institut für Transurane (ITU)

Abb. 3.4: Bestimmung des Nuklidvektors an hochaktiven Spaltprodukten
Die im Institut praktizierten Analysenverfahren wurden schon mehrmals zur Identifizierung von illegal transportierten und polizeilich beschlagnahmten Sendungen mit radioaktiven Stoffen eingesetzt. Dabei konnte aus der Zusammensetzung des aufgefundenen Materials auf die davon ausgehende Gefährdung und auf die Herkunft geschlossen werden.

Im Rahmen des EU-Programms „Dienst am Bürger“ werden Maßnahmen zur Therapie bestimmter Krebsarten (z. B. der lymphatischen Leukämie) mit Hilfe hochaktiver Alphastrahler entwickelt.

Die Laborbereiche werden derzeit entsprechend dem aktuellen Stand der Technik modernisiert. Insbesondere werden durch Umbauarbeiten neue Ganzkörpermonitorne installiert und die Strahlenschutzbereiche neu abgegrenzt.

3.7 Tritiumlabor Karlsruhe

Im vergangenen Jahr wurde das Genehmigungsvorhaben nach § 7 StrlSchV abgeschlossen und die entsprechende Genehmigung am 03.09.2007 erteilt. Die gesamte Dokumentation wurde im Rahmen des Genehmigungsverfahrens neu strukturiert und aktualisiert.

Das besondere Interesse des Tritiumlabors Karlsruhe gilt der Bestimmung der absoluten Neutrinomasse, die in der Astroteilchenphysik und der Kosmologie eine Schlüsselrolle spielt. Bei dem Experiment KATRIN wird Tritium, eine schwere Form von Wasserstoff, eingesetzt. Tritium zerfällt mit einer Halbwertzeit von 12,3 Jahren zu Helium, und neben freiwerdender Energie entstehen bei jedem Zerfall ein Elektron und ein Neutrino.

Das rund 33 Millionen Euro teure Großexperiment ist auf 10 Jahre angelegt und wird aus dem Haushalt der Helmholtz-Gemeinschaft finanziert. Für das Großexperiment werden an das bestehende Tritium-Labor Experimentierhallen angebaut. Das größte Gebäude beinhaltet das Herzstück des Versuches, das 22 Meter lange Hauptspektrometer, das einen Durchmesser von rund 10 Metern besitzt und die Energie der freigesetzten Elektronen messen wird, um auf die Neutrinomasse schließen zu können.
3.8 Sonstige Einrichtungen im Forschungszentrum Karlsruhe

Im Institut für Nukleare Entsorgung (INE) werden im Rahmen einer Genehmigung nach § 9 AtG Forschungs- und Entwicklungsarbeiten zur Langzeitsicherheit der Endlagerung radioaktiver Abfälle und zur Immobilisierung von hochradioaktiven Abfällen durchgeführt.

Die Betriebsstätte Heiße Zellen des Instituts für Materialforschung II führt im Rahmen einer Genehmigung nach § 9 AtG Untersuchungen an radioaktiven Materialien für das Programm Kernfusion (FUSION) durch. In diesem Programm sind die Aktivitäten des Forschungszentrums Karlsruhe zur Entwicklung von Technologien für einen Fusionsreaktor gebündelt.

3.9 TRIGA Heidelberg

3.10 Siemens-Unterrichtsreaktoren (SUR 100)

Die Siemens-Unterrichtsreaktoren wurden in erster Linie für die Verwendung im Unterricht und zur Ausbildung entwickelt und dienen insbesondere für Bestrahlungs- experimente, Aktivierungen und der Einführung in die Reaktorphysik als nützliche Hilfsmittel.

Sie haben eine sehr geringe Leistung von nur 0,1 W (100 Milliwatt) bzw. kurzzeitig bis max. 1 W und einen Reaktorkern, bestehend aus etwa 3,5 kg Uran mit einer Anreicherung von etwa 19,9% in der ungefähren Größe eines 10-Liter-Wassereimers. Aufgrund der sehr geringen Leistung ist der Abbrand des Urans so gering, dass die Lebensdauer des Reaktorkerns praktisch unbegrenzt ist. Die Einrichtung zeichnet sich durch eine einfache Bedienung aus und kann als inhärent sicher bezeichnet werden. So wird beispielsweise eine Kettenreaktion auch ohne die vorhandene Schnellabschalteinrichtung schon bei geringer Temperaturerhöhung von alleine gestoppt.

Der Aufwand im UM für die atomrechtliche Aufsicht belief sich für alle drei Unterrichtsreaktoren in Baden-Württemberg im Jahr 2006 auf etwa 6 Inspektionstage.
4 Umweltradioaktivität und Strahlenschutz

Aufgabe und Ziel der Aufsichtsbehörde ist es, Personal, Bevölkerung und Umwelt vor erhöhter ionisierender Strahlung aus den kerntechnischen Betrieben des Landes zu schützen. Neben der Überwachung und Kontrolle der kerntechnischen Einrichtungen im Lande gehören zu den Aufgaben der Aufsichtsbehörde außerdem

- allgemeine und anlagenübergreifende Fragen des Strahlenschutzes,
- Beauftragung und Auswertung von Messungen der Strahlung in der Umgebung der kerntechnischen Anlagen,
- die flächendeckende Überwachung der Radioaktivität in der Umwelt im ganzen Land,
- die Vorsorge und Bewältigung eines nuklearen Notfalles sowie die Beteiligung an entsprechenden Katastrophenschutzübungen und
- die Erteilung atomrechtlicher Genehmigungen zur Bearbeitung, Verarbeitung und sonstigen Verwendung von Kernbrennstoffen außerhalb genehmigungspflichtiger Anlagen (§ 9 AtG)
- sowie die staatliche Aufsicht bei der nuklearen Forschung.

4.1 Natürliche Radioaktivität

4.2 Kernreaktor-Fernüberwachung

Neben dem Umweltministerium haben auch die für die Kernkraftwerke zuständigen Katastrophenschutzbehörden, die Regierungspräsidien Stuttgart, Karlsruhe und Freiburg sowie deren Fachberater einen unmittelbaren Zugriff auf die KFÜ. Darüber hinaus greifen das Bundesamt für Strahlenschutz (BfS) in Freiburg (für Fessenheim, Leibstadt und Beznau) sowie das Ministerium für Umwelt und Forsten in Rheinland-Pfalz (für das KKW Philippsburg) auf die KFÜ Baden-Württemberg zu.

Bei der Online-Überwachung kommen vorzugsweise Mess- und Auswerteverfahren zum Einsatz, die eine schnelle, jedoch unspezifische Information über die Emissions- und Immissionssituation ermöglichen. Der endgültige Nachweis des bestimmungsgemäßen Betriebes bei der Immissionsüberwachung ist jedoch radiometrischen Spurenanalysen mit Labor- und Feldmessungen vorbehalten, die meist einer zeitaufwändigen Probennahme und Probenvorbereitung bedürfen.

4.2.1 Statistische Informationen zum Betrieb der KFÜ

Die KFÜ gehört was das Transaktions- und Datenvolumen betrifft (außerhalb der Forschung) zu den großen IT-Anwendungen des Landes Baden-Württemberg was Tabelle 4.1 zu entnehmen ist. Das System ist so ausgelegt, dass es neben dem operationellen System das gesamte Daten- und Transaktionsvolumen parallel im Übungsbetrieb mit simulierten Messdaten bewältigen kann.
<table>
<thead>
<tr>
<th>Signalrechnertypen</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messstationen</td>
<td>1045</td>
</tr>
<tr>
<td>Messreihen</td>
<td>1819</td>
</tr>
<tr>
<td>Messgrößen</td>
<td>92</td>
</tr>
<tr>
<td>Messwerte pro Tag (Normalbetrieb)</td>
<td>ca. 200.000 pro Tag</td>
</tr>
<tr>
<td>Alarmbetrieb (1-Min-Werte)</td>
<td>zus. ca. 530.000 pro Tag</td>
</tr>
<tr>
<td>Pseudomesswerte</td>
<td>ca. 10.000.000 pro Tag</td>
</tr>
<tr>
<td>DWD-Niederschlagsradar</td>
<td>5.000.000 pro Tag</td>
</tr>
<tr>
<td>DWD 3D-Prognose</td>
<td>33.500.000 pro Tag</td>
</tr>
<tr>
<td>DWD 2D-Prognose</td>
<td>7.000.000 pro Tag</td>
</tr>
<tr>
<td>Mobile Messungen ABC-Erkunderfahrzeuge</td>
<td>ca. 1.000 - 100.000 pro Mission</td>
</tr>
<tr>
<td>Datenvolumen Eingang konventionell</td>
<td>ca. 40 MB pro Tag</td>
</tr>
<tr>
<td>Datenvolumen Eingang DWD</td>
<td>ca. 200 MB pro Tag</td>
</tr>
<tr>
<td>Datenausgang an externe Partner</td>
<td>ca. 300.000 Messwerte pro Tag</td>
</tr>
<tr>
<td>Gesamtes Datenvolumen in Zentralroutern der LUBW</td>
<td>1 GB pro Tag (komprimiert)</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Daten- und Transaktionsvolumen des operationellen Systems der KFÜ

4.2.2 Betrieb der KFÜ im Jahr 2007, Erneuerung des Systems

4.2.3 Immissions-Überwachung - Neue Shortlink-Systeme zur Verbesserung des Funksondenempfangs

Zur Immissionsüberwachung kommt in der KFÜ ein Funksondensystem mit einem speziellen Funkverfahren zum Einsatz, dass einen Betrieb unabhängig von der Verfügbarkeit von Strom oder irgendwelcher GSM-Netze erlaubt. 2007 wurde damit
begonnen, zusätzlich zu den beiden großen Empfängern (Skylink-Systeme) auf dem Königstuhl bei Heidelberg und auf dem Feldberg bei Freiburg mit rund 100 km Reichweite, so genannte Shortlink-Empfänger mit bis zu 10 km Reichweite an den zu überwachenden Standorten zu installieren, um einen eventuellen Ausfall der beiden Hauptempfänger kompensieren zu können. Zusätzlich wird noch ein weiteres Shortlink-System für den mobilen Einsatz angeschafft, das im Ernstfall ausgebracht werden kann, bzw. für spezielle Überwachungsaufgaben zur Verfügung steht.

Abb. 4.1: Funkempfänger

4.2.4 Erweiterung der Ausbreitungsrechnung (ABR)

Nach den neuen Rahmenempfehlungen sind die Planungszenoren für die Ausgabe von Iodtabletten auf 100 km ausgedehnt worden. Die KFÜ trägt dieser neuen Anforderung durch eine Erweiterung der in der KFÜ eingesetzten ABR rechnung. Wurde bisher mit den Modellgebieten Klein (bis 2 km Radius), Mittel (bis 10 km) und Groß (bis 25 km) gerechnet, so wurde 2007 mit Untersuchungen zur Anwendbarkeit der in der ABR verwendeten Rechenmodelle auf die erweiterten Modellgebietsgrenzen begonnen. Ziel ist es, auf Basis der in der KFÜ-ABR verwendeten und das Gelände sowie das aktuelle Wetter berücksichtigenden Modelle, Rechnungen bis zu einem Radius von 100 km durchzuführen.
4.3 Überwachung der allgemeinen Umweltradioaktivität und Umgebungsüberwachung kerntechnischer Anlagen

In Ergänzung zu den schnellen, aber unspezifischen Online-Messungen z. B. der KFÜ werden weitere Messprogramme durchgeführt. Deren Aufgabe ist die detaillierte Ermittlung der Radioaktivität in der Umwelt durch radiochemische Spurenanalysen in Messlaboren.

Im Bereich der allgemeinen Radioaktivitätsüberwachung der Umwelt unterscheidet man zwischen der Überwachung der allgemeinen Umweltradioaktivität, die flächendeckend in ganz Deutschland durchgeführt wird, und der Umgebungsüberwachung kerntechnischer Anlagen.

4.3.1 Überwachung der allgemeinen Umweltradioaktivität

In Baden-Württemberg werden die Messaufgaben durch die drei Landesmessstellen bei der LUBW sowie den Chemischen und Veterinäruntersuchungsämtern in Stuttgart (CVUA S) und Freiburg (CVUA FR) wahrgenommen. Abbildung 4.3 zeigt die Anzahl der Messungen, die im Jahr 2007 im Rahmen der Überwachung der allgemeinen Umweltradioaktivität von den einzelnen Landesmessstellen durchgeführt worden sind.

<table>
<thead>
<tr>
<th>CVUA-Freiburg</th>
<th>CVUA-Stuttgart</th>
<th>LUBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>insitu</td>
<td>69</td>
<td>445</td>
</tr>
</tbody>
</table>

Abb. 4.3: Anzahl der Messungen im Rahmen der Überwachung der allgemeinen Umweltradioaktivität

4.3.2 Umgebungsüberwachung kerntechnischer Anlagen

Die Überwachung umfasst die im Lande befindlichen Anlagen sowie das baden-württembergische Gebiet um die grenznahen Anlagen in Frankreich und in der Schweiz. Sie stellt eine Gegenkontrolle zur Emissionsüberwachung dar und gibt Aufschluss über die Auswirkungen der Emissionen aus den kerntechnischen Anlagen auf die Umgebung.

Abb. 4.4: Anzahl der Messungen (nach Standort) im Rahmen der Umgebungsüberwachung nach REI
Im Rahmen der Umgebungsüberwachung werden bei den kerntechnischen Anlagen in Baden-Württemberg zwei voneinander unabhängige Messprogramme durchgeführt, eines vom Betreiber der Anlage, das andere von der LUBW. Durch überlappende Messungen der LUBW wird eine Kontrolle der Betreibermessungen gewährleistet.

4.4 Strahlenschutz

Im Folgenden werden einige Schwerpunkte aus dem Bereich Strahlenschutz dargestellt.

4.4.1 Gesetz zur Kontrolle hochradioaktiver Strahlenquellen

4.4.2 Strahlenschutz-Fachkunderichtlinie

4.5 Kompetenzzentrum Strahlenschutz

Nutzung von Sprach- und Datendiensten möglich. Dies gewährleistet den Zugriff auf alle Datenbestände und Fachanwendungen, so dass im Ernstfall die aus der täglichen Arbeit bekannten und gewohnten EDV-Systeme bis hin zur dienstlichen E-Mail zur Verfügung stehen. Der Koffer besitzt eine eigene Stromversorgung über einen Hochleistungsakkku, die eine mehrstündige Unabhängigkeit von jeglicher weiterer Infrastruktur gewährleistet.

Abb. 4.5: Kommunikationskoffer

4.6 Notfallschutz

4.6.1 Katastrophenschutzübungen

Im Jahr 2007 hat sich die Abteilung an drei Übungen beteiligt.

ABC-Erkunder-Übung am 24.03.2007

Die ABC-Erkunder hatten die Aufgabe, einige Störfallmesspunkte in der Umgebung des Kernkraftwerks Fessenheim anzufahren, Hand-Messungen (der natürlichen Umweltradioaktivität) durchzuführen und die Ergebnisse mittels Funk an die Leitzentrale im Feuerwehrhaus Breisach zu übermitteln. Die Daten wurden dort von der Feuerwehr in die Elektronischen Lagedarstellung (ELD) eingegeben. Ebenso wurden nach Rückkehr der ABC-Erkunderfahrzeuge in das Feuerwehrhaus Breisach die während der Fahrt aufgezeichneten Daten der NBR³-Messgeräte erstmals durch die Feuerwehr in die ELD hochgeladen und automatisch in der KFÜ weiterverarbeitet (s. Abb. 4.6). Aus diesen Daten wurden im Radiologischen Lagezentrum vom Stab Strahlenschutz des Umweltministeriums aktuelle Informationen (u. a. Lagemeldungen, Messergebnisse und Karten) in die ELD eingestellt und somit allen Beteiligten innerhalb kurzer Zeit zur Verfügung gestellt.

³ NBR: Natural Background Rejection

Das NBR-System misst im Sekundentakt und zeichnet sowohl die ODL-Messwerte als auch die GPS-Daten in geographischer Breite und Länge auf. Das System ist in der Lage, durch eine Unterteilung des Spektrums in verschiedene Energiebereiche und deren Vergleich die natürlichen und künstlichen Anteile an der Dosisleistung zu unterscheiden.
Bei einem tatsächlichen Ereignis beginnen die Einsatzkräfte der Feuerwehr nach Durchzug der Wolke mit ihren Messungen, wenn die Ablagerung der radioaktiven Stoffe am Boden abgeschlossen ist.

Bei der Übung konnte gezeigt werden, wie die Daten an das für die „Ermittlung und Bewertung der radiologischen Lage“ zuständige Radiologische Lagezentrum im Umweltministerium (Stab Strahlenschutz) übermittelt und dort mit Hilfsmitteln der KFÜ zu einer übersichtlichen Lagedarstellung zusammengefasst werden konnten.

Diese neuen Auswertemöglichkeiten ermöglichen dem Stab Strahlenschutz, sich ein genaueres Bild zur radiologischen Situation in einer Region zu machen, als es mit den bisherigen Mitteln möglich war.

Aero-Gamma-Übung im August 2007

Arbeitsgruppe Notfallübungen der Abteilung Kernenergieüberwachung, Umweltradioaktivität

Die Arbeitsgruppe hat 2007 begonnen:
- die Unterlagen der Abteilung im Bereich des Notfallschutzes zu überarbeiten und zu optimieren sowie
- die Anforderungen an die Vorbereitung, Durchführung und Auswertung von Übungen zu erarbeiten.

Es wurde in Abstimmung mit den Betreibern ein Übungsplan erstellt. Die Arbeitsgruppe hat zwei Übungen vorbereitet.

Im Rahmen einer im Juli 2007 durchgeführten Alarmierungsübung wurde die Erreichbarkeit der Stabsmitglieder außerhalb der normalen Arbeitszeit getestet. Das Ergebnis der Übung hat gezeigt, dass in einem Ernstfall in relativ kurzer Zeit ausreichend Personal zur Aufgabenwahrnehmung im Stabsbereich der Abteilung zur Verfügung gestanden hätte.

4.6.2 Daten der ABC-Erkunder

Es haben sich an dieser Aktion 22 von 43 Landkreisen beteiligt und ihre NBR-Daten größtenteils selbständig in das KFÜ-Portal geladen haben (Abb. 4.7).
Abb. 4.7: NBR-Messungen aus den Landkreisen im Jahr 2007 Ortsdosisleistung (ODL) aufgrund von Bodenstrahlung, als Isoflächendarstellung

Aufgrund dieser umfangreichen Tests konnte die Auswertefunktion in der KFÜ verbessert werden. Für die Zukunft ist anzustreben, dass die Landesfeuerwehrschule das Hochladen der NBR-Daten in die KFÜ in ihr Jahresprogramm für die ABC-Erkunder aufnimmt und die Übertragung der NBR-Daten auch in die Katastropheneinsatzpläne der Regierungspräsidien aufgenommen wird.

4.6.3 Elektronische Lagedarstellung

4.7 Forschungs- und Entwicklungsvorhaben

Das UM förderte im Berichtszeitraum Forschungs- und Entwicklungsvorhaben (F&E) die unmittelbar mit seinen Aufgaben im Zusammenhang stehen. Dabei können sowohl fachliche oder IT-Gesichtspunkte im Vordergrund stehen.

Ausbreitungsrechnung

Im Rahmen der bisherigen F&E-Vorhaben wurde beim Institut für Kernenergetik und Energiesysteme der Universität Stuttgart (IKE) zur Evaluierung von Ausbreitungsrechnungen eine Simulationsplattform aufgebaut und betrieben. Die Konzepte, Werkzeuge und Systeme dieser Simulationsplattform konnten auch schon auf andere Projekte übertragen werden (Virtueller Reaktor des IKE, Energieberater im Webportal des Landes, Ausbreitungsrechnung im „Bodensee-online“-Projekt).

KFÜ-Portal

In einem ersten Schritt konnte in einem Ende 2007 abgeschlossenen Vorhaben gezeigt werden, wie mit Hilfe von Web-Services Funktionen des KFÜ-Klienten auf zentral gepflegte und vielfältig verknüpfte Informationen im KFÜ-Portal zugreifen.

Ganzkörperzähler (Bodycounter) - In-Vivo-Nachweis von Blei-210 im menschlichen Körper als retrospektiver Indikator für hohe Radonexpositionen
5 Entsorgung

5.1 Entsorgung radioaktiver Abfälle und abgebrannter Brennelemente

Beim Betrieb von Kernkraftwerken fallen abgebrannte Brennelemente an, die gemäß Atomgesetz entweder schadlos zu verwerten\(^4\) (Wiederaufarbeitung) oder als radioaktive Abfälle geordnet zu beseitigen sind (direkte Endlagerung). Seit dem Verbot von Transporten abgebrannter Brennelemente ist die direkte Endlagerung der einzige zulässige Entsorgungsweg.

Radioaktive Abfälle fallen sowohl beim Betrieb, bei der Stilllegung und dem Rückbau kerntechnischer Anlagen als auch in der Industrie, Forschung und Medizin an. Die entstandenen radioaktiven Abfälle müssen in der Regel behandelt werden, um sie in einen endlagergerechten Zustand zu überführen (Konditionierung). Bis zu ihrem Einbringen in ein Endlager müssen die konditionierten Abfälle zwischengelagert werden.

Im Folgenden wird eine Übersicht über die Entsorgungssituation in Baden-Württemberg gegeben. Einen Schwerpunkt bildet dabei die Entsorgung der in Kernkraftwerken anfallenden Abfälle.

Entsorgung abgebrannter Brennelemente

Zur Aufrechterhaltung des Weiterbetriebs der Kernkraftwerke müssen abgebrannte Brennelemente durch frische Brennelemente ersetzt und die abgebrannten Brennelemente nach einer gewissen Abklingzeit in den Brennelementlagerbecken entsorgt werden.

Transporte von abgebrannten Brennelementen in die ausländischen Wiederaufarbeitungsanlagen sind gemäß § 9a AtG seit dem 1. Juli 2005 unzulässig. Infolgedessen bleibt als einziger Entsorgungspfad die direkte Endlagerung der abgebrannten Brennelemente. Die dadurch bedingte langjährige Zwischenlagerung hat gemäß Atomgesetz standortnah zu erfolgen. Die Lagersituation an den baden-württembergischen Standorten stellt sich derzeit wie folgt dar:

Die Tabelle 5.1 zeigt die Entwicklung über den Bestand an abgebrannten Brennelementen in den Standortlagern und den geplanten Einsatz frischer Brennelemente in den nächsten 2 Jahren und bis zur Stilllegung der Anlagen (die letzten beiden Spalten enthalten nur Schätzwerte):

5 Cask for Storage and Transport of Radioactive Material

62
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GKN I</td>
<td>44</td>
<td>120</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>GKN II</td>
<td>298</td>
<td>393</td>
<td>84</td>
<td>584</td>
</tr>
<tr>
<td>KKP 1</td>
<td>156</td>
<td>260</td>
<td>160</td>
<td>394</td>
</tr>
<tr>
<td>KKP 2</td>
<td>247</td>
<td>370</td>
<td>88</td>
<td>420</td>
</tr>
<tr>
<td>KWO 2)</td>
<td>317</td>
<td>342</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Bei GKN und KKP Standortzwischenlager, bei KWO externes Nasslager
2) KWO wurde am 11. Mai 2005 endgültig abgeschaltet.

Die abgebrannten Brennelemente werden nach der Entladung aus dem Reaktor zunächst für einige Zeit im betrieblichen Brennelementlagerbecken im Reaktorgebäude zum Abklingen aufbewahrt. In diesen kraftwerksinternen Lagerbecken befanden sich am 31. Dezember 2007 abgebrannte Brennelemente der nachfolgend aufgeführten Anzahl:
<table>
<thead>
<tr>
<th>Kernkraftwerk</th>
<th>Lagerbecken Gesamtkapazität</th>
<th>Kernbeladung: Anzahl der Brennelemente</th>
<th>Gesamtzahl der gelagerten bestrahlten Brennelemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKN I<sup>1)</sup></td>
<td>310</td>
<td>177</td>
<td>108 + 88<sup>2)</sup></td>
</tr>
<tr>
<td>GKN II</td>
<td>786</td>
<td>193</td>
<td>377</td>
</tr>
<tr>
<td>KKP 1<sup>3)</sup></td>
<td>948</td>
<td>592</td>
<td>343 + 11<sup>4)</sup></td>
</tr>
<tr>
<td>KKP 2</td>
<td>716<sup>3)</sup></td>
<td>193</td>
<td>453</td>
</tr>
<tr>
<td>KWO</td>
<td>230</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1) In GKN II können flexibel bis zu max. 256 GKN I-Brennelemente gelagert werden.
2) 108 Brennelemente in GKN I und 88 Brennelemente in GKN II
3) Im Lagerbecken von KKP 2 können zusätzlich 169 KKP 1-Brennelemente gelagert werden.
4) 343 Brennelemente in KKP 1 und 11 Brennelemente in KKP 2

Tabelle 5.2: Belegung der Brennelementlagerbecken mit bestrahlten Brennelementen in den Reaktorgebäuden am 31.12.2007

Radioaktive Betriebsabfälle
Der gesamte Bereich der Behandlung, der Konditionierung, der Lagerung und des Transports radioaktiver Betriebsabfälle aus Kernkraftwerken ist in der Strahlenschutzverordnung geregelt.

An allen Standorten sind ausreichende Zwischenlagerkapazitäten für schwach- und mittelradioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung vorhanden.

Radioaktive Abfälle aus der Wiederaufarbeitung

Außer beim Betrieb der Kernkraftwerke fallen auch bei der Wiederaufarbeitung abgebrannter Brennelemente größere Mengen an radioaktiven Abfällen an, insbesondere auch hochradioaktive, wärmeentwickelnde Abfälle.

Aus der Wiederaufarbeitungsanlage der Areva NC (ehemals COGEMA\(^7\)) in La Hague werden in der Regel jährlich Rücktransporte von HAW-Glaskokillen in das Transportbehälterlager Gorleben (TBL) durchgeführt. Sie werden voraussichtlich bis 2010 abgeschlossen sein. Der Rücktransport der HAW-Glaskokillen aus der Wiederaufarbeitungsanlage der BNG\(^8\) in Sellafield wird aller Voraussicht nach nicht vor 2012 beginnen.

Die aus der Wiederaufarbeitung bei BNG in Sellafield zurückzuführenden schwach- und mittelradioaktiven Abfälle mit geringer oder vernachlässigbarer Wärmeentwicklung werden vollständig durch Abfälle mit höherer spezifischer Aktivität substituiert. Da-

\(^6\) HAW: High Active Waste
\(^7\) Compagnie Générale des Matières Nucléaires
\(^8\) British Nuclear Group
durch wird das Transportaufkommen von mehreren hundert Großbehältern auf die Rückführung von lediglich einem weiteren CASTOR-Behälter mit hochradioaktiven Glasprodukten vermindert.

Durch eine Verfahrensänderung bei der Abwasserbehandlung in der Wiederaufarbeitungsanlage der Areva NC in La Hague ist es möglich, anstelle der bisher vorgesehenen Rückführung von etwa 3600 Fässern mit bituminierten, schwachradioaktiven Abfällen eine entsprechende Menge mittelradioaktiven Glasproduktes zurückzunehmen, was eine Reduktion des ursprünglichen Abfallvolumens um ungefähr den Faktor 10 bedeutet.

Radioaktive Abfälle im Forschungszentrum Karlsruhe

Auf dem Gelände des Forschungszentrums Karlsruhe (FZK) in Eggenstein-Leopoldshafen werden einige inzwischen stillgelegte kerntechnische Anlagen mit dem Ziel der vollständigen Beseitigung bis zur sogenannten „grünen Wiese“ rückgebaut, so z.B. der Mehrzweckforschungsreaktor (MZFR), die Kompakte Natriumgekühlte Kernreaktoranlage (KNK) sowie die ehemalige Wiederaufarbeitungsanlage Karlsruhe (WAK) (s. auch Kap. 3). Die bei diesen Stilllegungsprojekten anfallenden radioaktiven Abfälle werden zur weiteren Behandlung und zur Zwischenlagerung an die ebenfalls im Forschungszentrum Karlsruhe gelegene Hauptabteilung Dekontaminationsbetriebe (HDB) abgegeben. Die HDB behandelt bzw. konditioniert nicht nur die anfallenden Reststoffe des Stilllegungsbereiches des FZK und der WAK, sondern auch die des Forschungsbereiches, des Europäischen Instituts für Transurane (ITU) sowie der Landessammelstellen. Darüber hinaus werden auch verschiedene Entsorgungsdienstleistungen für externe Dritte angeboten.
Die HDB lagert derzeit schwach- und mittelradioaktive Abfälle mit einem Lagervolumen von ca. 62.500 m3 und betreibt damit das größte deutsche Zwischenlager für derartige Abfälle. Insgesamt lagern dort auch 317 m3 radioaktive Abfälle mit nicht vernachlässigbarer Wärmeentwicklung, die derzeit nicht im Endlager Konrad einlagerbar sind. Es lagern dort auch die radioaktiven Abfälle der Landessammelstelle Baden-Württemberg. Der Landessammelstelle sind davon 850 m3 radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung und 28,4 m3 mit nicht vernachlässigbarer Wärmeentwicklung zuzurechnen. Es dürfen aber keine hochradioaktiven Abfälle (z. B. abgebrannte Brennelemente oder Glaskokillen) bei der HDB gelagert werden.

5.2 Standortzwischenlager

Das Atomgesetz verpflichtet die Betreiber der Kernkraftwerke zur Einrichtung von Standort-Zwischenlagern für abgebrannte Brennelemente. Dort erfolgt die durch den Genehmigungsbescheid des Bundesamtes für Strahlenschutz auf maximal 40 Jahre befristete Zwischenlagerung bis zur endgültigen Verbringung der Brennelemente in ein Endlager.

Standortzwischenlager Philippsburg

Die im Interims- lager von KKP aufbewahrten 16 CASTOR-Transport- und Lagerbehälter konnten noch vor Beginn der Revision von KKP 1 Ende März in das Zwischenlager transportiert werden. Die Genehmigung für das Interimslager war durch

Standortzwischenlager Neckarwestheim
Das seit 2004 errichtete Standortzwischenlager Neckarwestheim, das wegen der besonderen Standortgegebenheiten in zwei Tunnelröhren gebaut wurde, konnte im Oktober 2006 in Betrieb genommen werden.

Inzwischen wurden 27 CASTOR-Behälter in dem Zwischenlager eingelagert. Der Betrieb des Zwischenlagers funktionierte im Berichtsjahr reibungslos.

Im Interimslager befinden sich keine CASTOR-Behälter mehr.

Standortzwischenlager Obrigheim